不多说,直接上干货!
说简单点,就是,先对hashcode,然后对eauals。
以下是HashMap的jdk1.6 :
以下是HashMap的jdk1.7 :
以下是HashMap的jdk1.8 :
equal() 和hashCode()方法都是基类Object的方法
其源码如下:
public boolean equals(Object obj) { return (this == obj); }//hashCode method/*Returns a hash code value for the object. This method is supported for the benefit of hash tables such as those provided by {@link java.util.HashMap}.*/public native int hashCode();
因此,equal()方法就是直接比较对象的地址,对于hashCode(),Java采用了哈希表的原理。 哈希算法也称为散列算法,是将数据依特定算法直接指定到一个地址上。初学者可以这样理解,hashCode方法实际上返回的就是对象存储的物理地址(实际可能并不是)。
那么问题来了? 为什么重写equal()方法的时候通常需要重写hashCode()方法呢?
equal()方法是比较对象是否相等的,hashCode()方法是在当对象存入集合如HashSet对象,以及HashMap对象、HashTable等里面用的,这样一来,当集合要添加新的元素时,先调用这个元素的hashCode方法,就一下子能定位到它应该放置的物理位置上。 如果这个位置上没有元素,它就可以直接存储在这个位置上,不用再进行任何比较了;如果这个位置上已经有元素了, 就调用它的equals方法与新元素进行比较,相同的话就覆盖,不相同就散列其它的地址。 所以这里存在一个冲突解决的问题。这样一来实际调用equals方法的次数就大大降低了,几乎只需要一两次。
比如String方法里重写了equal()方法:
//String重写的equal方法 public boolean equals(Object anObject) { if (this == anObject) { return true; } if (anObject instanceof String) { String anotherString = (String)anObject; int n = value.length; if (n == anotherString.value.length) { char v1[] = value; char v2[] = anotherString.value; int i = 0; while (n-- != 0) { if (v1[i] != v2[i]) return false; i++; } return true; } } return false; } //hashCode()方法 public int hashCode() { int h = hash; if (h == 0 && value.length > 0) { char val[] = value; for (int i = 0; i < value.length; i++) { h = 31 * h + val[i]; } hash = h; } return h; }
例子:
package com.demo;import java.util.HashMap;import java.util.Iterator;import java.util.Map;public class Equal { public static void main(String[] args) { Mapmaps = new HashMap (); maps.put("1", "zhangsan"); maps.put("1", "lisi"); maps.put("2", "wangwu"); maps.put("2", "zhaoliu"); maps.put("3", "zhaoliu"); Iterator > iterator = maps.entrySet().iterator(); while(iterator.hasNext()){ Map.Entry entry = iterator.next(); System.out.println(entry.getKey()+entry.getValue()); } }}//输出结果:// 1lisi// 2zhaoliu// 3zhaoliu
总之
1、equal()是判断两个对象是否相同的 2、hashCode()是在HashSet、HashMap等中用的 3. 通常equal() 和hashCode()要保证对象的一致性。。。。
以下是关于HashCode的官方文档定义:
hashcode方法返回该对象的哈希码值。支持该方法是为哈希表提供一些优点,例如,java.util.Hashtable 提供的哈希表。
在 Java 应用程序执行期间,在同一对象上多次调用 hashCode 方法时,必须一致地返回相同的整数,前提是对象上 equals 比较中所用的信息没有被修改。从某一应用程序的一次执行到同一应用程序的另一次执行,该整数无需保持一致。 如果根据 equals(Object) 方法,两个对象是相等的,那么在两个对象中的每个对象上调用 hashCode 方法都必须生成相同的整数结果。 以下情况不 是必需的:如果根据 equals(java.lang.Object) 方法,两个对象不相等,那么在两个对象中的任一对象上调用 hashCode 方法必定会生成不同的整数结果。但是,程序员应该知道,为不相等的对象生成不同整数结果可以提高哈希表的性能。 实际上,由 Object 类定义的 hashCode 方法确实会针对不同的对象返回不同的整数。(这一般是通过将该对象的内部地址转换成一个整数来实现的,但是 JavaTM 编程语言不需要这种实现技巧。) 当equals方法被重写时,通常有必要重写 hashCode 方法,以维护 hashCode 方法的常规协定,该协定声明相等对象必须具有相等的哈希码。
以上这段官方文档的定义,我们可以抽出成以下几个关键点:
1、hashCode的存在主要是用于查找的快捷性,如Hashtable,HashMap等,hashCode是用来在散列存储结构中确定对象的存储地址的;
2、如果两个对象相同,就是适用于equals(java.lang.Object) 方法,那么这两个对象的hashCode一定要相同;
3、如果对象的equals方法被重写,那么对象的hashCode也尽量重写,并且产生hashCode使用的对象,一定要和equals方法中使用的一致,否则就会违反上面提到的第2点;
4、两个对象的hashCode相同,并不一定表示两个对象就相同,也就是不一定适用于equals(java.lang.Object) 方法,只能够说明这两个对象在散列存储结构中,如Hashtable,他们“存放在同一个篮子里”。
再归纳一下
就是hashCode是用于查找使用的,而equals是用于比较两个对象的是否相等的。
1、hashcode是用来查找的,如果你学过数据结构就应该知道,在查找和排序这一章有
例如内存中有这样的位置 0 1 2 3 4 5 6 7 而我有个类,这个类有个字段叫ID,我要把这个类存放在以上8个位置之一,如果不用hashcode而任意存放,那么当查找时就需要到这八个位置里挨个去找,或者用二分法一类的算法。 但如果用hashcode那就会使效率提高很多。 我们这个类中有个字段叫ID,那么我们就定义我们的hashcode为ID%8,然后把我们的类存放在取得得余数那个位置。比如我们的ID为9,9除8的余数为1,那么我们就把该类存在1这个位置,如果ID是13,求得的余数是5,那么我们就把该类放在5这个位置。这样,以后在查找该类时就可以通过ID除 8求余数直接找到存放的位置了。 2、但是如果两个类有相同的hashcode怎么办那(我们假设上面的类的ID不是唯一的),例如9除以8和17除以8的余数都是1,那么这是不是合法的,回答是:可以这样。那么如何判断呢?在这个时候就需要定义 equals了。 也就是说,我们先通过 hashcode来判断两个类是否存放某个桶里,但这个桶里可能有很多类,那么我们就需要再通过 equals 来在这个桶里找到我们要的类。 那么。重写了equals(),为什么还要重写hashCode()呢? 想想,你要在一个桶里找东西,你必须先要找到这个桶啊,你不通过重写hashcode()来找到桶,光重写equals()有什么用啊。
最近去面试了几家公司,被问到hashCode的作用,虽然回答出来了,但是自己还是对hashCode和equals的作用一知半解的,所以决定把它们研究一下。
以前写程序一直没有注意hashCode的作用,一般都是覆盖了equals,却没有覆盖hashCode,现在发现这是埋下了很多潜在的Bug!今天就来说一说hashCode和equals的作用。
先来试想一个场景,如果你想查找一个集合中是否包含某个对象,那么程序应该怎么写呢?通常的做法是逐一取出每个元素与要查找的对象一一比较,当发现两者进行equals比较结果相等时,则停止查找并返回true,否则,返回false。但是这个做法的一个缺点是当集合中的元素很多时,譬如有一万个元素,那么逐一的比较效率势必下降很快。于是有人发明了一种哈希算法来提高从该集合中查找元素的效率,这种方式将集合分成若干个存储区域(可以看成一个个桶),每个对象可以计算出一个哈希码,可以根据哈希码分组,每组分别对应某个存储区域,这样一个对象根据它的哈希码就可以分到不同的存储区域(不同的桶中)。如下图所示:
实际的使用中,一个对象一般有key和value,可以根据key来计算它的hashCode。假设现在全部的对象都已经根据自己的hashCode值存储在不同的存储区域中了,那么现在查找某个对象(根据对象的key来查找),不需要遍历整个集合了,现在只需要计算要查找对象的key的hashCode,然后找到该hashCode对应的存储区域,在该存储区域中来查找就可以了,这样效率也就提升了很多。说了这么多相信你对hashCode的作用有了一定的了解。
下面就来看看hashCode和equals的区别和联系。
在研究这个问题之前,首先说明一下JDK对equals(Object obj)和hashCode()这两个方法的定义和规范:在Java中任何一个对象都具备equals(Object obj)和hashCode()这两个方法,因为他们是在Object类中定义的。 equals(Object obj)方法用来判断两个对象是否“相同”,如果“相同”则返回true,否则返回false。 hashCode()方法返回一个int数,在Object类中的默认实现是“将该对象的内部地址转换成一个整数返回”。
下面是我查阅了相关资料之后对以上的说明做的归纳总结:
1、若重写了equals(Object obj)方法,则有必要重写hashCode()方法。
2、若两个对象equals(Object obj)返回true,则hashCode()有必要也返回相同的int数。3、若两个对象equals(Object obj)返回false,则hashCode()不一定返回不同的int数。4、若两个对象hashCode()返回相同int数,则equals(Object obj)不一定返回true。5、若两个对象hashCode()返回不同int数,则equals(Object obj)一定返回false。6、同一对象在执行期间若已经存储在集合中,则不能修改影响hashCode值的相关信息,否则会导致内存泄露问题。
想要弄清楚以上六点,先要知道什么时候需要重写equals和hashCode。一般来说涉及到对象之间的比较大小就需要重写equals方法,但是为什么第一点说重写了equals就需要重写hashCode呢?实际上这只是一条规范,如果不这样做程序也可以执行,只不过会隐藏bug。一般一个类的对象如果会存储在HashTable,HashSet,HashMap等散列存储结构中,那么重写equals后最好也重写hashCode,否则会导致存储数据的不唯一性(存储了两个equals相等的数据)。而如果确定不会存储在这些散列结构中,则可以不重写hashCode。但是个人觉得还是重写比较好一点,谁能保证后期不会存储在这些结构中呢,况且重写了hashCode也不会降低性能,因为在线性结构(如ArrayList)中是不会调用hashCode,所以重写了也不要紧,也为后期的修改打了补丁。
从上面的图中可以清晰地看到在存储一个对象时,先进行hashCode值的比较,然后进行equals的比较。可能现在你已经对上面的6点归纳有了一些认识。我们还可以通过JDK中得源码来认识一下具体hashCode和equals在代码中是如何调用的。
HashSet.java
public boolean add(E e) { return map.put(e, PRESENT)==null; }
HashMap.java
public V put(K key, V value) { if (key == null) return putForNullKey(value); int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entrye = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; }
最后再来看几个测试的例子吧:
测试一:覆盖equals(Object obj)但不覆盖hashCode(),导致数据不唯一性
public class HashCodeTest { public static void main(String[] args) { Collection set = new HashSet(); Point p1 = new Point(1, 1); Point p2 = new Point(1, 1); System.out.println(p1.equals(p2)); set.add(p1); //(1) set.add(p2); //(2) set.add(p1); //(3) Iterator iterator = set.iterator(); while (iterator.hasNext()) { Object object = iterator.next(); System.out.println(object); } } } class Point { private int x; private int y; public Point(int x, int y) { super(); this.x = x; this.y = y; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Point other = (Point) obj; if (x != other.x) return false; if (y != other.y) return false; return true; } @Override public String toString() { return "x:" + x + ",y:" + y; } }
输出结果:
true x:1,y:1 x:1,y:1
原因分析:
(1)当执行set.add(p1)时(1),集合为空,直接存入集合;
(2)当执行set.add(p2)时(2),首先判断该对象(p2)的hashCode值所在的存储区域是否有相同的hashCode,因为没有覆盖hashCode方法,所以jdk使用默认Object的hashCode方法,返回内存地址转换后的整数,因为不同对象的地址值不同,所以这里不存在与p2相同hashCode值的对象,因此jdk默认不同hashCode值,equals一定返回false,所以直接存入集合。
(3)当执行set.add(p1)时(3),时,因为p1已经存入集合,同一对象返回的hashCode值是一样的,继续判断equals是否返回true,因为是同一对象所以返回true。此时jdk认为该对象已经存在于集合中,所以舍弃。
测试二:覆盖hashCode方法,但不覆盖equals方法,仍然会导致数据的不唯一性
修改Point类:
class Point { private int x; private int y; public Point(int x, int y) { super(); this.x = x; this.y = y; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + x; result = prime * result + y; return result; } @Override public String toString() { return "x:" + x + ",y:" + y; } }
输出结果:
false x:1,y:1 x:1,y:1
原因分析:
(1)当执行set.add(p1)时(1),集合为空,直接存入集合;
(2)当执行set.add(p2)时(2),首先判断该对象(p2)的hashCode值所在的存储区域是否有相同的hashCode,这里覆盖了hashCode方法,p1和p2的hashCode相等,所以继续判断equals是否相等,因为这里没有覆盖equals,默认使用'=='来判断,所以这里equals返回false,jdk认为是不同的对象,所以将p2存入集合。
(3)当执行set.add(p1)时(3),时,因为p1已经存入集合,同一对象返回的hashCode值是一样的,并且equals返回true。此时jdk认为该对象已经存在于集合中,所以舍弃。
public class HashCodeTest { public static void main(String[] args) { Collection set = new HashSet(); Point p1 = new Point(1, 1); Point p2 = new Point(1, 2); set.add(p1); set.add(p2); p2.setX(10); p2.setY(10); set.remove(p2); Iterator iterator = set.iterator(); while (iterator.hasNext()) { Object object = iterator.next(); System.out.println(object); } } } class Point { private int x; private int y; public Point(int x, int y) { super(); this.x = x; this.y = y; } public int getX() { return x; } public void setX(int x) { this.x = x; } public int getY() { return y; } public void setY(int y) { this.y = y; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + x; result = prime * result + y; return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Point other = (Point) obj; if (x != other.x) return false; if (y != other.y) return false; return true; } @Override public String toString() { return "x:" + x + ",y:" + y; } }
运行结果:
x:1,y:1 x:10,y:10
总结:
1.hashCode是为了提高在散列结构存储中查找的效率,在线性表中没有作用。 2.equals和hashCode需要同时覆盖。 3.若两个对象equals返回true,则hashCode有必要也返回相同的int数。 4.若两个对象equals返回false,则hashCode不一定返回不同的int数,但为不相等的对象生成不同hashCode值可以提高 哈希表的性能。 5.若两个对象hashCode返回相同int数,则equals不一定返回true。 6.若两个对象hashCode返回不同int数,则equals一定返回false。 7.同一对象在执行期间若已经存储在集合中,则不能修改影响hashCode值的相关信息,否则会导致内存泄露问题。
importjava.io.*;importorg.apache.hadoop.io.*;public class TextPair implements WritableComparable { private Text first;//Text 类型的实例变量 first private Text second;//Text 类型的实例变量 second public TextPair() { set(newText(),newText()); } public TextPair(String first, String second) { set(new Text(first),new Text(second)); } public TextPair(Text first, Text second) { set(first, second); } public void set(Text first, Text second) { this.first = first; this.second = second; } public Text getFirst() { return first; } public Text getSecond() { return second; } //将对象转换为字节流并写入到输出流out中 @Override public void write(DataOutput out)throwsIOException { first.write(out); second.write(out); } //从输入流in中读取字节流反序列化为对象 @Override public void readFields(DataInput in)throwsIOException { first.readFields(in); second.readFields(in); } @Override public int hashCode() { return first.hashCode() *163+ second.hashCode(); } @Override public boolean equals(Object o) { if(o instance of TextPair) { TextPair tp = (TextPair) o; return first.equals(tp.first) && second.equals(tp.second); } return false; } @Override publicString toString() { return first +"\t"+ second; } //排序 @Override public int compareTo(TextPair tp) { int cmp = first.compareTo(tp.first); if(cmp !=0) { return cmp; } return second.compareTo(tp.second); }}